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How individuals choose evidence to test hypotheses is a long-standing puzzle. According to an
algorithmic theory that we present, it is based on dual processes: individuals’ intuitions depending on
mental models of the hypothesis yield selections of evidence matching instances of the hypothesis, but
their deliberations yield selections of potential counterexamples to the hypothesis. The results of 228
experiments using Wason’s selection task corroborated the theory’s predictions. Participants made
dependent choices of items of evidence: the selections in 99 experiments were significantly more
redundant (using Shannon’s measure) than those of 10,000 simulations of each experiment based on
independent selections. Participants tended to select evidence corresponding to instances of hypotheses,
or to its counterexamples, or to both. Given certain contents, instructions, or framings of the task, they
were more likely to select potential counterexamples to the hypothesis. When participants received
feedback about their selections in the “repeated” selection task, they switched from selections of
instances of the hypothesis to selection of potential counterexamples. These results eliminated most of
the 15 alternative theories of selecting evidence. In a meta-analysis, the model theory yielded a better fit
of the results of 228 experiments than the one remaining theory based on reasoning rather than meaning.
We discuss the implications of the model theory for hypothesis testing and for a well-known paradox of
confirmation.

Public Significance Statement
Our research shows that individuals select evidence to test hypotheses that almost always seeks an
instance of the hypothesis to corroborate it and that less often seeks potential counterexamples to the
hypothesis to refute it. The data indicate that individuals do not reason independently about the
evidence; a result that helped to eliminate most of the 16 existing cognitive theories.
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And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.
—T. S. Eliot, Little Gidding

The way to test a hypothesis depends on its nature and on the
available evidence. The evidence may derive from testimony or

from observation— casual in daily life, systematic in science. A
general hypothesis ranges over a set of entities, e.g., If a person
has the disease, then the person has the M1 virus. One sort of
test examines people with the disease: if any of them do not
have the virus, then the hypothesis is false. Another sort of test
examines those who do not have the virus: if any of them has
the disease, then the hypothesis is false. In practice, of course,
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the selection of evidence is a strategic and sometimes a statis-
tical matter. People often suppose that instances of a hypothe-
sis, such as people with both the disease and the virus, are crucial,
but no matter how many instances one encounters, there remains the
possibility of a counterexample, someone with the disease who does
not have the virus. One counterexample suffices to falsify a hypoth-
esis unless it is probabilistic. And the possibility of its falsification is
one criterion that a hypothesis is scientific (Popper, 1959). Three
psychological questions therefore stand in need of answers:

1. Do logically naive individuals grasp the need to check for
potential counterexamples to a hypothesis?

2. What are the mental processes underlying their selections
of evidence?

3. What factors in the situation modify their perfor-
mance, so that, for example, they start to search for
counterexamples?

A massive psychological literature exists on these topics, and
its major stimulus was the late Peter Wason’s invention of
various tasks designed to discover whether naive individuals
grasped the importance of counterexamples. In his “2 4 6”
experiment, participants were given these three numbers as an
instance of a general numerical rule. Their task was to discover
the rule. They generated further triples, and the experimenter
told them whether or not each triple was an instance of the rule.
At any point, they could announce their hypothesis about the
rule, and the experimenter told them whether or not it was
correct (Wason, 1960). The participants tended to test instances
of their hypotheses rather than counterexamples, and they often
failed to discover the correct rule, which was any three ascend-
ing numbers. But, the test itself has some problems arising from
the participants’ need to generate their own hypotheses (Klay-
man & Ha, 1987; Poletiek, 1996) and the deceptive nature of
the actual rule (Baron, 2008).

Another of Wason’s tasks was seminal: his selection task. It has
provoked more than 200 journal articles (Evans, 2017). Readers
might therefore suppose that psychologists have definitive answers
to the three questions above. Far from it. They have proposed at
least 16 different theories about the testing of hypotheses. Such a
number shows that no real understanding exists of how individuals
select evidence. The present article therefore aims to eliminate as
many of these theories as possible, and to make progress toward a
definitive theory.

The article begins with an outline of the two main tasks for
studying how people choose evidence: the selection task, and a task in
which individuals receive feedback from their selections of evidence,
the “repeated” selection task (Johnson-Laird & Wason, 1970a). It then
describes a new theory of how individuals select evidence, which is an
integration of mental models with an early dual-process theory
(Johnson-Laird & Wason, 1970b). This “model” theory makes three
principal predictions, and the article surveys the experimental findings
corroborating them. These results include a novel analysis using
Shannon’s (1948) measure of information to show that individuals
choose items of evidence in a dependent way, that is, one choice
relates to another. The article postpones the discussion of alternative

theories until after it has marshaled the main evidence about the
selection task, because this evidence eliminates many of the alterna-
tive theories. The evidence leaves only two viable theories: the model
theory and a theory based on inferences from hypotheses or on
guesswork (Klauer, Stahl, & Erdfelder, 2007). The model theory
relies on the meaning of a hypothesis, which at the very least distin-
guishes between those cases in which the hypothesis is true and those
in which it is false. The inference-guessing theory relies on inferences
from the hypothesis, which at the very least are conclusions that
follow from it, and expressible in other assertions. The article reports
an analysis of the goodness of fit of these two theories to the results
of all 228 relevant experiments that we could find in the literature.
Finally, it discusses the implications of these results for testing hy-
potheses.

The Selection Task

The selection task enables investigators to determine which
potential evidence individuals think is relevant to finding out
whether a hypothesis is true or false. In its original version (Wa-
son, 1966, 1968), the experimenter explains to the participants that
each card in a pack has a letter on one side and a number on the
other side. Four cards chosen at random from the pack are placed
on the table; for example,

E K 2 3

The experimenter then presents a hypothesis, such as “If there is a
vowel on one side of a card, then there is an even number on the
other side.” The participant’s task is to select all those cards, and
only those cards, which would have to be turned over in order to
discover whether the hypothesis is true or false about the four
cards on the table. The first four experiments with the selection
task used a conditional hypothesis of the sort, if p then q, such as
the one above, and they yielded four canonical selections of cards,
and a remainder of miscellaneous selections, each occurring less
often than chance (Wason & Johnson-Laird, 1972, p. 182). Given
a hypothesis, if p then q, we symbolize the four cards as follows,
using a bar over a letter to represent that it is a negative instance
of a clause in the hypothesis,

p (the E card for the hypothesis above, because it is a vowel)
p� (the K card, because it is not a vowel)
q (the 2 card, because it is an even number)
q� (the 3 card, because it is not an even number).
The canonical selections occurred in the following percentages

in the four studies (n � 128):
pq: 46%
p: 33%
pqq� : 7%
pq� : 4%

other miscellaneous selections: 10%. As Nickerson (2015, p. 33)
remarked, the majority of selections are either pq or p alone. They
are instances of the hypothesis, whereas a “counterexample” se-
lection is the pair pq� , and q is irrelevant, because no matter what
is on its other side, it cannot falsify the hypothesis.

Piaget and his colleagues argued that to check the truth of a
conditional, if p then q, individuals look for a counterexample,
p and q� (e.g., Beth & Piaget, 1966, p. 181). Yet, adults failed to
choose q� in the selection task. Skeptics therefore thought that
the selection task was a trick (Cohen, 1981), over complicated
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(Finocchiaro, 1980), or elicited a sensible neglect of q� (Weth-
erick, 1970, 1995). Such views defend human rationality. Their
proponents, rightly impressed by the invention of logic and
mathematics, hold that humans are rational. Yet, the view that
it is impossible to think illogically, as the logician Ramsey
(1931/1990, p. 7) remarked long ago, is like arguing that it is
impossible to break the rules of bridge, because, if you do, you
are no longer playing bridge. As we show, people’s errors in the
selection task are systematic and predictable. Moreover, given
feedback about the consequences of their selections, they soon
switch to potential counterexamples—a point that the skeptics
overlooked.

The original selection task used an abstract hypothesis about
letters and numbers, but with a hypothesis that was an everyday
generalization, “Every time I go to Manchester, I travel by
train.” Most participants tended to select the two cards corre-
sponding to the potential counterexample (i.e., going to Man-
chester, traveling there by car and not train; Wason & Shapiro,
1971). Other studies examined deontic principles, which govern
what is obligatory and what is permissible. The participants had
to select, not evidence that tests a hypothesis, but evidence of a
potential contravention of a principle. The first deontic study
had a striking effect too (Johnson-Laird, Legrenzi, & Legrenzi,
1972). It used a postal regulation akin to one in force in the
United Kingdom:

If a letter is sealed, then it has a 50 lire stamp on it.

Lire were the then Italian currency, which was a fact well known
to the English participants. Nearly all of them selected counterex-
amples to the postal regulation, but hardly any of them selected
counterexamples to an abstract hypothesis, and there was no trans-
fer from one task to the other.

Some subsequent studies replicated the effect of an everyday gen-
eralization on counterexample selections (Bracewell & Hidi, 1974;
Gilhooly & Falconer, 1974; Pollard, 1981; van Duyne, 1974). Others
did not (Brown, Keats, Keats, & Seggie, 1980; Griggs & Cox, 1982;
Stanovich & West, 1998a; Tweney & Yachanin, 1985; Yachanin &
Tweney, 1982). For example, the hypothesis: “If I eat haddock, then
I drink gin” is hardly abstract, but led to no reliable increase in
counterexample selections (Manktelow & Evans, 1979). The same
study also found no improvement with the generalization about trav-
eling to Manchester by train. Other studies showed that a critical
factor in the deontic rule about postage was familiarity with a British
postal regulation that charged less postage for unsealed envelopes
(e.g., Cheng & Holyoak, 1985; Golding, 1981). Another familiar
deontic principle was effective (Griggs & Cox, 1982): “If a person is
drinking beer, then the person must be over 18.” This tended to elicit
the selection of potential contraveners: a beer drinker of less than 18
(for similar results, see Cheng & Holyoak, 1985; Kroger, Cheng, &
Holyoak, 1993).

We examine presently all the studies that we could find using
abstract hypotheses, everyday hypotheses, or deontic principles. The
implications of the early studies seemed clear, however. When naive
individuals test a hypothesis, they tend to focus on those entities that
the hypothesis refers to, and to select these instances of the hypothesis.
They select evidence corresponding to a counterexample to the hy-
pothesis only if they are exceptional individuals, or the contents are
helpful, or they carry out the task we describe next.

The Effects of Feedback in the Repeated
Selection Task

What happens when individuals select evidence to test a hy-
pothesis and then get feedback about its consequences? The re-
peated selection task answers this question. In a typical study,
participants tested a hypothesis, such as, “All the triangles are
white,” which is equivalent to the conditional, “If a shape is a
triangle, then it is white” (Johnson-Laird & Wason, 1970a). There
were two boxes of shapes, and, as the participants knew, one box
contained 15 white shapes and one box contained 15 black shapes.
On each trial they could ask either for a white shape (q) or for a
black shape (q� ), and they then saw whether it was a triangle (p) or
not (p�). Most participants started with potential instances of the
hypothesis: they requested a white shape. It was always an actual
instance of the hypothesis: a triangle. They chose more white
shapes. But, whether a white shape was a triangle or not, it was
consistent with the hypothesis, and even if all the white shapes
were triangles, the participants still wouldn’t know whether the
hypothesis was true. In contrast, if a black shape were a triangle,
then it would refute the hypothesis. So, sooner or later, the par-
ticipants started to choose nothing but black shapes, and kept doing
so until they had exhausted the box. At which point, they knew
whether or not the hypothesis was true. Some participants had a
partial insight: they vacillated between the white and black shapes
(see also Oakhill & Johnson-Laird, 1985). But, with a simple
hypothesis, all the participants at some point switched to choosing
only potential counterexamples to the hypotheses—a result often
overlooked by critics attacking the selection task.

The repeated task is comparable to a standard selection task in
which the choice is between only two items of evidence, q or q� .
Such a “reduced array” improves the rate of counterexample
selections in comparison to an array of all four items (Lunzer,
Harrison, & Davey, 1972; Roth, 1979), perhaps because it reduces
the load on working memory (Baron, 2008). The improvement
does not transfer to the standard version with four cards (Wason &
Green, 1984), and even some children can cope with the reduced
array (Girotto, Gilly, Blaye, & Light, 1989; Girotto, Light, &
Colbourn, 1988).

The Model Theory

The original insight theory. The first theory of the selection
of evidence postulated that individuals varied in their insight into
the importance of counterexamples to the hypothesis (Johnson-
Laird & Wason, 1970b). It proposed an algorithm, which was in
the form of a flowchart, but not programmed, because computers
were not available to the authors in those days. Its basic assump-
tion is that individuals use a representation of the meaning of the
hypothesis to guide the selection of evidence. They may operate
intuitively with no insight into counterexamples, or they may
switch to such an insight, or in rare cases they may have this
insight from the outset. Hence, the theory was a “dual process” one
avant la lettre (cf. Wason & Evans, 1975; Wason & Johnson-
Laird, 1970), and it was the first theory of hypothesis-testing to be
described in an algorithm. Oddly, it seems to be still the only
algorithmic theory of hypothesis-testing, because alternative the-
ories describe what is computed rather than how it is computed.
We have recently implemented the theory in a computer program,
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with one crucial modification, and we now outline the theory and
program.

The new model theory. The theory of mental models—the
model theory, for short—was developed to explain reasoning in
general (e.g., Johnson-Laird, 1983; Johnson-Laird, Khemlani, &
Goodwin, 2015). It postulates that a conditional hypothesis, if p
then q, refers to what is possible and what is impossible (Johnson-
Laird et al., 2015). The conjunction, p and q, is possible for a true
conditional, but impossible for a false conditional, whereas the
conjunction, p and not-q, is impossible for a true conditional but
possible for a false conditional. Cases of not-p, however, are
possible whether or not the conditional is true. Experiments have
shown that people make such judgments (Quelhas, Rasga, &
Johnson-Laird, 2017). The model theory accordingly postulates
that the conditional: “If there is an E on one side of a card, then
there is a 2 on the other side” refers to a conjunction of possibil-
ities. They are represented in two mental models, as depicted in the
following diagram:

E 2

. . .

The first model represents the possibility of an E and 2, and the
second model denoted by the ellipsis is a place-holder for possi-
bilities in which there is not an E. Mental models underlie the
intuitive system (system 1) of the program. However, they can be
fleshed out into fully explicit models, which yield a conjunction of
all the possibilities:

E 2

E� 2

E� 2�

and, most important, of the counterexample to the hypothesis,
which is impossible:

E 2�

Fully explicit models underlie the deliberations (system 2) of the
program, and because the two models containing E� are possible
whether the hypothesis is true or false, the truth of the hypothesis
implies just one possibility and one impossibility. A single possi-
bility implies a factual claim: E and 2 co-occur, and a single
impossibility implies another factual claim: E and 2� do not co-
occur.

This semantics solves a paradox of confirmation that has long
puzzled philosophers and psychologists (see, e.g., Hempel, 1945;
Nickerson, 1996). The semantics of the original insight theory was
from logic (see Jeffrey, 1981, chapter 1). And, in standard logic, a
hypothesis, such as, “If it is a roc, then it is white” is equivalent to
“If it not white, then it is not a roc.” So, the observation of, for
instance, a blue dahlia corroborates the hypothesis about rocs. It
gets worse. The hypothesis is true in case the proposition “it is a
roc” is false. In fact, the proposition is false because rocs are
mythological birds, and so the hypothesis is true. As logicians say,
it is “vacuously” true because rocs do not exist. Hence, in standard
logic, a general hypothesis, if p then q, can be confirmed without
establishing that instances of p exist. Likewise, in the repeated
selection task with the hypothesis, “All triangles are white,” one
need only examine shapes that are not white, and the hypothesis

could be true because there are no triangles. In contrast, the
semantics of mental models ensures that the truth of the hypothesis
depends on showing both that white triangles occur and that
nonwhite triangles do not occur. It is therefore sensible to select
some instances of white shapes in order to establish that white
triangles exist, and to select all the instances of black shapes to
establish that none of them are triangles. And the claim about rocs
is not true merely because rocs do not exist. Conditional hypoth-
eses mean something quite different from their analogs in logic,
and this meaning does not yield the paradox of confirmation.

The algorithm for the selection task is the original one (Johnson-
Laird & Wason, 1970b) but it now uses models of the hypothesis
in place of a semantics from logic. Its first step is to make a list of
those items of evidence to which the hypothesis refers—an antic-
ipation of “matching” bias (see Evans, 1972, 1998). Given a
conditional hypothesis, if p then q, the list is either p or pq. That
is, with no insight into counterexamples, system 1 in the program
selects as potential evidence any item on its list based on mental
models. With a partial insight, system 2 of the program constructs
the fully explicit models of the hypothesis, and adds any additional
item that could verify the hypothesis, or, failing that, any that could
falsify the hypothesis. So, if q is not on the opening list, it is
selected now because it can verify the hypothesis. But, if q is
already on the opening list, the program adds q� because it can
refute the hypothesis, yielding the selection pqq� . With complete
insight from the outset, the program’s system 2 constructs fully
explicit models of the hypothesis and selects only items that are
potential counterexamples to the hypothesis: pq� . The theory is not
deterministic, because its level of insight is probabilistic (pace
Evans, 1977). The program uses probabilistic parameters to yield
the level of insight, and its source code in the programming
language Python is in the online supplemental materials. Readers
can interact with a demonstration of the program at: https://mm-
wason-selection-task.herokuapp.com/.

The algorithm’s focus on the items in models is borne out in the
finding that individuals spend more time inspecting those items
that they go on to select than those they do not select (e.g., Ball,
Lucas, Miles, & Gale, 2003; Ball, Lucas, & Phillips, 2005; Evans,
1995, 1996; Evans & Ball, 2010; Lucas & Ball, 2005; cf. Roberts
& Newton, 2001). We report later on the theory’s predictions and
its fit to the results of experiments.

Other versions of the model theory. Schroyens, Schaeken,
and d’Ydewalle (2001) formalized their own version of the model
theory, which Schroyens and Schaeken (2003) showed gave a
better account of inferences from conditional premises than a
probabilistic model (Oaksford, Chater, & Larkin, 2000); and Ober-
auer (2006) corroborated this analysis and examined two further
versions of the model theory. Koralus has likewise developed
another version of the model theory (Koralus & Mascarenhas,
2013). But, these versions of the theory are not formulated for the
selection task, and so we consider them no further.

The effects of negation on the selection task. The model
theory explains a striking discovery due to Evans and his col-
leagues (e.g., Evans & Lynch, 1973). Given a conditional hypoth-
esis with a negated then-clause, if p then not q, participants made
a counterexample selection, pq, much more often than they made
a counterexample selection, pq� , for an affirmative conditional. But,
given a conditional with a negated if-clause, if not-p then q, or if
not-p then not-q, participants showed little consensus about which
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items of evidence to select. They seemed almost to be guessing.
Evans described these effects in terms of heuristics, including the
“matching” heuristic, that is, the tendency to select evidence that
matches the item referred to in the then-clause of a hypothesis,
whether or not it is negated (see, e.g., Beattie & Baron, 1988; Platt
& Griggs, 1995; Reich & Ruth, 1982). As Evans (1983) predicted,
this tendency to match ignoring negations was reduced if cards
used explicit negations, such as, “not an E”, instead of “K” (Evans,
Clibbens, & Rood, 1996). A large study replicated the phenomena,
but on a smaller scale (Stahl, Klauer, & Erdfelder, 2008).

The model theory explains the effects of negation using Wa-
son’s (1965) hypothesis that negation suggests the possibility of
the corresponding affirmative proposition—a view anticipated by
philosophers of language (e.g., Strawson, 1952, p. 8). Hence, the
mental models of a conditional with a negated then-clause—If p
then not-q—are as follows:

p q�
q

Individuals can select a card only if their models of the conditional
represent it. Hence, the preceding conditional should be more
likely to elicit a counterexample selection of pq. The mental
models of a conditional with a negated if-clause—If not-p, then
q—are as follows:

p
p� q

They do not represent q� , but are equivalent to a disjunction, p or
q, (see Evans, 1993) and disjunctions are a well-known source of
a greater variety of responses (Johnson-Laird & Tagart, 1969;
Wason & Johnson-Laird, 1969). A crucial result corroborates the
theory’s account. Goodwin and Wason (1972) detected different
levels of insight in participants’ remarks as they explained their
selections of evidence. For an affirmative conditional, if p then q,
they referred to selecting q because p on its other side would verify
the hypothesis. But, for a negative hypothesis, if p then not q, they
referred to selecting q because p on its other side would falsify the
hypothesis (see also Evans, 1995).

Deontic interpretations of conditionals. The model theory
of deontics postulates that models can represent permissible situ-
ations (Bucciarelli & Johnson-Laird, 2005), but it is incompatible
with modal logics, of which there are many, because individuals
make inferences that are invalid in modal logics, and reject infer-
ences equally robustly that are valid in modal logics (Ragni &
Johnson-Laird, 2017).

Knowledge can modulate the interpretation of conditionals and
other assertions (e.g., Quelhas, Johnson-Laird, & Juhos, 2010). It
leads people to interpret a conditional such as “If the animal is a lion,
then the female is a lioness” as equivalent to a biconditional, which
is equivalent to “If, and only if, the animal is a lion, then the
female is a lioness.” They do so because they know that for no other
animal is the female a lioness. Knowledge also modulates deontic
assertions. For example, the deontic conditional “If you tidy your
room, then you may go out to play” is likely to be treated as a
biconditional, “If, and only if, you tidy your room, then you may go
out to play.” It therefore has two counterexamples:

tidy room do not go out to play : pq�
do not tidy room go out to play : p�q

In general, participants should select all four instances: pq�p�q, as
potential counterexamples to the conditional. But, the speaker
(presumably a parent) and the listener (presumably a child) are two
protagonists each concerned with just one of the two counterex-
amples. So, those taking the point of view of the child should
select only the first pair: the child tidied the room, yet she didn’t
go out to play, whereas those taking the point of view of the parent
should select only the second pair: the child didn’t tidy the room,
yet she went out to play (Light, Girotto, & Legrenzi, 1990).
Generalizations that are not deontic can also be interpreted as
biconditionals (e.g., Quelhas et al., 2010), and then point of view
has similar effects too (Almor & Sloman, 2000; Fairley, Mankte-
low, & Over, 1999; Staller, Sloman, & Ben-Zeev, 2000).

Two observations informed the theory’s account of tests of
deontic principles. First, children learn what they should not do
earlier than what they should do (Gralinski & Kopp, 1993). Sec-
ond, adults are more sensitive to counterexamples to deontic
principles than to instances of them (Bucciarelli & Johnson-Laird,
2005). In tests of moral principles, individuals should therefore be
more likely to select potential counterexamples than instances.

The model theory’s predictions. The model theory makes
three principal predictions about the selections that individuals
should make to test hypotheses or deontic principles:

Prediction 1: The only reliable selections of potential evi-
dence for tests of conditional hypotheses should be the four
canonical ones. Other selections should be haphazard, and
therefore occur no more often than chance.

Prediction 2: Choices of items of evidence to test conditional
hypotheses should be dependent: intuitions are based on
mental models and should yield selections that include q only
if they include p; and deliberations are based on fully explicit
models and should yield selections that include q� only if they
include p.

Prediction 3: Any manipulation that makes a counterexample
to a hypothesis more salient should increase selections of
potential falsifications (Johnson-Laird & Byrne, 1991, p. 80;
Johnson-Laird & Byrne, 2002). Hence, deontic principles
should be more likely to yield counterexample selections than
other generalizations do, and everyday hypotheses should be
more likely to yield them than abstract ones. Counterexam-
ples can be made salient for abstract hypotheses in the in-
structions and in the framing of the task.

The Empirical Evaluation of the Model Theory

To assess the model theory’s three predictions, we assembled all
the papers we could find on the testing of conditional hypotheses.
We excluded those studies that did not report the frequencies of the
four canonical selections p, pq, pq� , and pqq� . We classified all the
resulting experiments according to their three sorts of generaliza-
tion: abstract, everyday, and deontic. There were 228 experiments
that satisfied our criteria, and their individual results are available
in the online supplemental materials.

Our first task was to check whether the results of the 228 studies
were homogenous enough to be worth analyzing. We assessed
their homogeneity for each of the three sorts of generalization.
Experiments with abstract hypotheses were of three sorts requiring
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the participants to test whether the hypothesis was true or false,
whether it was false, or whether it holds, and we tested the
homogeneity of results for these different instructions too. Table 1
summarizes the results. The rank orders of the frequencies of the
four canonical selections of evidence showed a robust concordance
for each sort of generalization (as Kendall’s W shows because it
ranges from 0 for no consensus to 1 for perfect consensus). We
therefore assessed the model theory’s predictions.

Prediction 1: Individuals tend to make a canonical selection
of evidence. The model theory predicts that individuals should
make one of the four canonical selections. Some participants
guess, make haphazard responses, or fail to tackle the task prop-
erly, and so the prediction excludes such responses. But, what
selections were guesses, errors, or failures? One touchstone is that
each instance of such responses should be idiosyncratic and rare,
that is, it should occur no more often than a selection made at
random. There are 16 possible selections, and therefore a selection
that occurs less than 6% in the overall results occurs less often than
a random one. Within our database, 99 experiments reported the
percentages of all 16 selections, which include the choice of no
items at all. Table 2 presents each of the selections that occurred
6% or more for at least one of the three sorts of generalization in
these 99 experiments. They include the four canonical selections:
pq, p, pq� and pqq� . They also include a selection that reflects either
a biconditional interpretation (e.g., Manktelow & Over, 1991) or a
precautionary choice of all four cards in place of a thoughtful
choice: pp�qq� , and a selection made in online studies with special
instructions to consider each card carefully (Klauer et al., 2007): q.

Overall, the test-bed corroborated the prediction that individuals
tend to make the canonical selections of evidence.

Prediction 2: The dependence of selections of evidence.
Individuals could select any of the four items, p, p� , q, and q� ,
independently of the others. But, the model theory predicts that
selections are dependent, for example, the selection of q is depen-
dent on the selection of p. The issue matters, because independent
selections call for an analysis only of the frequencies of choice for
each of the four individual items of evidence, and some studies
report only these data, whereas dependent selections call for an
analysis of the frequencies of the different selections as a whole.
So, are selections independent or dependent?

As Evans (1977, p. 635) remarked, the issue is an empirical one.
He tested the correlation between the presence of q and of q� in the
selections. A reliable correlation would show, he argued, that their
choices of items of evidence were dependent on one another.
Conversely, the lack of a reliable correlation would support the
null hypothesis of independent selections. Because the expected
values in the cells of the 2 � 2 table were for some studies less
than 5, Evans assessed the correlation with the Fisher–Yates exact
test, though it calls for unrelated data (Siegel, 1956, p. 96). In
multiple conditions of six studies, no significant correlation oc-
curred, and so Evans accepted the null hypothesis of indepen-
dence. He likewise proposed a stochastic theory in which each
item of evidence is chosen independently from the others.

Pollard (1985) readdressed the issue using the same method, but
he examined all six possible correlations between the four items: p
with p� , p with q, p with q� , and so on, in studies of all four possible

Table 1
The Concordances (Kendall’s W) in the Frequencies of the Four Canonical Selections of
Evidence Over 228 Different Experiments Examining the Three Main Sorts of Conditional
Generalization: Abstract Hypotheses, Everyday Hypotheses, and Deontic Principles, and for the
Three Sorts of Instruction for the Abstract Hypotheses

Three sorts of
generalization

Instructions:
the evidence

should
determine that
the hypothesis:

Number of
experiments

Number and
percentage of

participants making
a canonical

selection

Kendall’s W over the 4
canonical selections, its

�2(df � 3), and
probability

W �2 p

Abstract Is true or false 55 3,497 (68%) .52 86 �.001
Is false 29 1,503 (73%) .36 32 �.001
Holds 20 307 (71%) .31 18 �.001
Overall 104 5,307 (69%) .34 107 �.001

Everyday Overall 44 2,451 (67%) .25 33 �.001
Deontic Overall 80 2,547 (77%) .54 129 �.001

Table 2
The Percentages of the Selections of Potential Evidence to Test the Hypothesis, If p Then q, That
Occurred for at Least One of the Three Sorts of Generalization (Abstract, Everyday, and
Deontic) Among the 99 Experiments Reporting all 16 Possible Selections

Three sorts of
selection task

Number of
experiments pq p pq� pp�qq� q pqq�

The remaining 10
selections each

made � 4%

Abstract 43 29 29 7 4 9 2 19
Everyday 30 26 15 21 9 2 7 20
Deontic 26 9 5 61 4 1 1 18
Overall 99 26 22 17 6 6 4 19
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hypotheses based on conditionals with affirmative or negative
clauses (Evans & Lynch, 1973; Manktelow & Evans, 1979). His
results led him to reject independence in the selections of evidence.
His findings have been replicated in other studies (Oaksford &
Chater, 1994; Klauer et al., 2007).

A better assessment than pairwise correlations would provide a
single measure taking into account each selection as a whole for all
the selections in an experiment. We devised a procedure to make
such an assessment. It combines Shannon’s (1948) measure of
informativeness (or unpredictability) and the computer simulation
of thousands of experiments. Its rationale is straightforward. Sup-
pose that the selections in an experiment are more redundant—less
informative—than selections based only on the individual proba-
bilities with which each of the four items of evidence were selected
in the experiment. It follows that something is constraining the
selections over and above these four independent probabilities.
Hence, the selections are dependent.

The first step in our procedure is to compute the amount of
information in the selections in an actual experiment. Shannon’s
measure, which is symbolized as H, has the following equation in
units that are bits:

H � �� Pilog2Pi

where Pi is the probability of the ith selection of evidence in an
experiment, which depends on its frequency of occurrence in the
experiment, and log2 is a logarithm to the base 2. In general, the
greater the number of different selections, and the more evenly
distributed their frequencies, so the value of H increases, and it is
harder to predict the selections. If participants chose each item of
evidence independently of the others in making a selection, the
value of H for an experiment would not differ reliably from its
value for selections based on sampling each item of evidence
according to its probability in the experiment. But, if the value of
H for the selections in the experiment is reliably smaller than this
theoretical value, then we can reject the null hypothesis of inde-
pendent selections. In other words, the redundancy in an experi-
ment’s smaller value of H reflects the dependence of its selections.

We analyzed the redundancy of each of the experiments in the
database of 99 experiments reporting all 16 possible selections of
evidence, because pooling different low frequency selections into
a single “miscellaneous” category underestimates the value of H.
If each of the 16 selections has the same frequency of occurrence,
then H has a maximum value of 4 bits. The mean over the 99
experiments (see Table 2) was 2.14 bits. We implemented a
computer program to compare the redundancy of each experi-
ments’ selections with that of simulations of the experiment based
only on the probabilities of choices of the four items, and its source
code in R is in the second section of the supplemental materials. Its
main steps are as follows for each experiment in a set:

1. Compute N, the number of participants in the experiment,
and the probabilities with which each of the four items of
evidence, p, p� , q, and q� , occurred in the experiment’s
selections.

2. Compute Shannon’s informativeness, H, for the selec-
tions in the experiment.

3. Carry out 10,000 simulated experiments based on the
four probabilities of selecting each item of evidence,
assigning a selection based only on these probabilities to
each of N participants.

4. Return the H value of the actual experiment and the mean
H value of the simulated experiments based on the as-
sumption of independence.

For each of the three main sets of experiments, we then tested
whether the difference between the pairs of actual values of H and
the mean simulated values differed reliably (using a nonparametric
test, the Wilcoxon’s signed-ranks matched pairs test).

As an illustrative example, we use the selections of evidence
reported in Stahl et al.’s (2008) Experiment 2, which we chose
because it had 300 participants. Here are the frequencies of their
selections, in which 11 participants selected no evidence whatso-
ever:

pq p p�q q pp�qq none pq� q� pp� pqq� qq� p� pp�q p�qq� p�q

111 92 17 17 12 11 10 8 5 4 4 4 2 2 1

Shannon’s informativeness, H, for the experiment is 2.66 bits, and
it yields the following probabilities of choosing the four items of
evidence: p � .787, p� � .143, q � .510, q� � .190. The mean
informativeness of the 10,000 simulated experiments each based
on the same four probabilities and 300 participants was 3.00 bits.
All 10 thousand simulations of the experiment had a higher value
of H than the original experiment (Binomial test, p � .510,000).
Hence, the selections in the experiment are more redundant than
the simulated ones: the choices of the four items are dependent on
one another.

Table 3 presents the mean informativeness, H, of the 99 exper-
iments reporting all 16 possible selections and the mean values of
H of each of their 10,000 simulations, and the results of Wilco-
xon’s tests and their p-values comparing the simulations to the
actual results for the three sets of experiments. The redundancy of
the real experiments over the simulated ones shows that individ-
uals choose items of evidence to test a hypothesis in a dependent
way. This result corroborates the model theory and eliminates any
theory that predicts that selections are independent.

Prediction 3: Any manipulation that makes a counterexam-
ple to a hypothesis more salient should increase corresponding
selections in tests of the hypothesis. A counterexample to a
hypothesis, if p then q, is the case of pq� . Hence, when counterex-
amples are salient, individuals should be more likely to make such
a selection. Three methods of manipulating salience are, first, to
change the contents of the task, second, to alter its instructions,
and, third, to reframe the experiment as a whole. Some manipu-
lations of the contents have enhanced the rate of counterexample
selections, but not all have. Likewise, manipulations of the instruc-
tions in experiments have sometimes altered performance and
sometimes had no reliable effects. Consider, for instance, whether
the instruction to try to falsify the hypothesis or to detect violations
of it, lead to an increase in counterexample selections. Some
studies reported reliable effects (e.g., Chrostowski & Griggs, 1985;
Dominowski, 1995; Green, 1995; Griggs, 1995; Griggs & Cox,
1983; Platt & Griggs, 1993). Other studies reported no reliable

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

785ON SELECTING EVIDENCE TO TEST HYPOTHESES



effects (Augustinova, Oberlé, & Stasser, 2005; Griggs, 1984;
Valentine, 1985; Yachanin, 1986).

To assess the overall influence of contents and instructions on
performance, we analyzed studies reporting the four canonical selec-
tions for abstract, everyday, and deontic generalizations. Table 4
summarizes the results. The three sorts of generalization had a reliable
effect on the percentages of counterexample selections (Kruskal-
Wallis one-way analysis of variance by ranks, �2 � 54.6, df � 2, p �
.001). Likewise, the three sorts of instruction for tests of an abstract
hypothesis also had a reliable effect on the percentages of counterex-
ample selections (Kruskal-Wallis, �2 � 62.3, df � 2, p � .001).
Deontic principles, as the model theory predicts, were the most
effective in eliciting counterexample selections, and, for abstract
hypotheses, the instructions to test whether the hypothesis was false,
or holds, were the most effective in eliciting counterexample selec-
tions of evidence.

Various ways of reframing the selection of evidence affect
performance (e.g., Griggs & Jackson, 1990; Margolis, 1987). A
most revealing study is due to Sperber, Cara, and Girotto (1995).
Their prediction was that if a counterexample is both relevant and
easy to envisage, participants should be more likely to make a
falsifying selection. The term relevant here does double duty: it
has both its everyday meaning and a technical meaning (Sperber &
Wilson, 1995). The investigators carried out four experiments
corroborating their hypothesis, and the fourth of them illustrates
the results. The four groups of participants (n � 21 per group)
corroborated the prediction: 57% of those in the group in which the
counterexample was relevant and accessible made counterexample
selections; only 5% (one participant) did so in the group in which
the counterexample was neither relevant nor accessible; and the

participants in the other two groups had an intermediate perfor-
mance: 38% made counterexample selections (see also Girotto,
Kemmelmeier, Sperber, & Van der Henst, 2001).

The salience of counterexamples by itself appears to increase
the corresponding selections. Love and Kessler (1995) used the
conditional hypothesis: “If there are Xow, then there must be a
force field,” where the participants knew that the Xow are strange
crystal-like organisms that depend for their existence on a force
field. When the context suggested the possibility of counterexam-
ples, that is, mutant Xows that can survive without a force field,
the participants were more likely to make a counterexample se-
lection than in a control condition. Likewise, Liberman and Klar
(1996) showed that underlying Cosmides’s (1989) idea that people
check generalizations to find out whether others are cheating them
is the participants’ grasp of counterexamples (see also Brown &
Moore, 2000; Cheng & Holyoak, 1989; Gigerenzer & Hug, 1992;
Politzer & Nguyen-Xuan, 1992).

Overall, salient counterexamples have the predicted effect on
testing hypotheses. And when the framing of the experiment—its
contents, instructions, background story—make counterexamples
relevant and easy to access, participants are more likely to select
only potential refutations of the hypothesis. As the example of the
Xow shows, this phenomenon goes beyond the mere recall of a
familiar counterexample to a hypothesis.

Alternative Theories of the Selection of Evidence

The evidence in the previous section helps to evaluate all the
theories of the selection of evidence. At least 16 such theories
exist, and they are based on the meanings of hypotheses, on

Table 3
The Mean Informativeness, H, (in Bits) of 99 Experiments Reporting the 16 Possible Selections
of Evidence (for Abstract, Everyday, and Deontic Generalizations), the Mean Values of H of
Sets of 10,000 Simulations of Each Experiment, and Wilcoxon Tests and Their p-values of the
Differences Between the Pairs of Real and Simulated Experiments in Each Set

The three sorts
of generalization

Mean value of H for
real experiments

Mean value of H for
sets of 10,000

simulations

Wilcoxon’s W and p value for
difference in H between the

real and simulated
experiments

Abstract 2.33 2.60 W � 89, p � .001
Everyday 2.43 2.75 W � 8, p � .001
Deontic 1.57 1.80 W � 24, p � .001

Table 4
The Percentages of the Four Canonical Selections for the Three Sorts of Generalization in the
228 Experiments and for the Three Different Instructions for the Abstract Contents

The three sorts
of generalization

Instructions. The evidence to
select should show that the

hypothesis:
Number of
experiments

Canonical selections

pq p pqq� pq�

Abstract Is true or false 55 45 41 4 11
Is false 29 29 30 7 34
Holds 20 30 13 13 44
Overall 104 39 36 5 19

Everyday Overall 44 39 23 11 28
Deontic Overall 80 19 13 4 64

Note. The counterexample selections are shown in bold.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

786 RAGNI, KOLA, AND JOHNSON-LAIRD



inferences using logical or content-specific rules, on innate mod-
ules for reasoning, on heuristics, on probabilities, or on neural mod-
els. Table 5 summarizes the theories, and the online supplemental
materials describe each of them in detail. The table states each
theory’s name, its provenance, and its basis for selecting evidence to
test generalizations. It also states whether the theory can account for
the three principal findings reported in the previous section: the
dependence of choices of items of evidence, their membership of the
canonical set, and the increase in counterexample selections given
pertinent experimental manipulations. We gave theories the benefit of
the doubt in cases of uncertainty. Only five theories make at least two
of the three predictions. However, the relevance theory (Sperber et al.,
1995) was not formalized in a way that allows tests of its fit to
experimental data (Dan Sperber, personal communication, January
26, 2017). The multiple-interpretations theory (Stenning & van Lam-
balgen, 2008) predicts independent selections for deontic principles
(cf. Table 3, which reports their robust dependency), and it is also not
formulated in a way that allows tests of goodness of fit. Of the three
remaining theories, one is the model theory described earlier. We now
outline the other two theories.

Optimal data selection. Oaksford and Chater (1994) made
the radical proposal that the selections of p, pq, and pq� , are all
rational, whether the hypothesis is abstract or an everyday gener-
alization, because for nearly everyone the testing of such hypoth-
eses concerns, not their truth or falsity, but the statistical depen-
dency, which according to these authors, these hypotheses express
(see Theory 13 in Table 5). The details of the theory are described
in the online supplemental materials. It predicts the correct rank
order of the frequencies with which the four items are chosen in
selections:

p � q � q� � p�

It also correctly predicts whether the six correlations between
choices of items (p with p� , p with q, etc.) are positive or negative.
Over the years, the authors clarified their theory (Oaksford &

Chater, 1996). But, it could not make quantitative predictions until
Hattori (2002) developed it in a new version (see Theory 14 in
Table 5). Oaksford and Chater (2003, 2007, p. 172) have endorsed
this revision to their theory (see also Oaksford & Wakefield,
2003). But, as Hattori (2002, p. 1262) pointed out, the new theory
implies that the choices of items of evidence are independent of
one another. So, the later theory of optimal data selection no longer
makes binary predictions about positive or negative correlations
between pairs of items, but instead it makes independent numerical
predictions about the probabilities of choosing each of the four
items of evidence.

The original theory provoked various reactions. It elicited crit-
icisms that it is mistaken in its normative assumptions (Evans &
Over, 1996), in its Bayesian presuppositions (Laming, 1996), in its
account of results (Evans & Over, 1996; Handley, Feeney, &
Harper, 2002; Oberauer, Weidenfeld, & Hörnig, 2004; Oberauer,
Wilhelm, & Rosas-Diaz, 1999), and in its adequacy as a theory
(Almor & Sloman, 1996). Its authors replied to these criticisms
(Oaksford & Chater, 1996). Their theory is a brilliant integration
of Bayes’s theorem and Shannon’s informativeness, and it has
addressed most of the phenomena of the selection task. Its recent
version in which the four cards are selected independently is based,
not on a central tenet of the theory, but on one made for a useful
index of fit (Mike Oaksford, personal communication, January 20,
2017). One of the advantages of the theory is that it is a special
case of a general Bayesian approach to cognition (see, e.g., Oaks-
ford & Hall, 2016). However, its proponents have recently argued
that brains need not represent or calculate probabilities at all, and
are poorly adapted to do so (Sanborn & Chater, 2016). Estimates
instead call for the sampling of information. And the decision of
whether or not to choose a potential item of evidence likewise
depends on sampling its possible outcomes, and on sampling their
informativeness (Nick Chater, personal communication, January
22, 2017).

Table 5
The 16 Theories of the Selection of Evidence: The Theory’s Name, Provenance, Basis of Its Predicted Selections, and Whether It Can
(�) or Cannot (�) Predict Dependent Selections, Canonical Selections (p, pq, pqq� , pq�), and the Role of Salient Counterexamples
in Selections

Name of theory Provenance Basis of selections
Dependent
selections

Canonical
selections

Salient
counterexamples

1. Defective truth tables Wason (1966) Meaning � � �
2. Insight and models Johnson-Laird and Wason (1970a) Meaning � � �
3. PSYCOP Rips (1994) Inference � � �
4. Relevance Sperber, Cara, and Girotto (1995) Inference & relevance � � �
5. Multiple interpretations Stenning and van Lambalgen (2008) Inference & meaning � � �
6. Pragmatic schemas Cheng and Holyoak (1985) Inference � � �
7. Innate modules Cosmides (1989) Innate module � � �
8. Stochastic theory Evans (1977) Heuristics & inference � � �
9. Matching & verifying Krauth (1982) Heuristics & meaning � � �

10. Heuristic-analytic Evans (1984, 1989, 2006) Heuristics & inference � � �
11. Inference-guessing Klauer, Stahl, and Erdfelder (2007) Guessing & inference � � �
12. Probability & utility Kirby (1994) Expected utility � � �
13. Optimal information gain, version 1 Oaksford and Chater (1994) Likely information gain � � �
14. Optimal information gain, version 2 Hattori (2002), Oaksford & Chater

(2003, 2007)
Adds logistic selection

function
� � �

15. Parallel distributed processes Leighton and Dawson (2001) Backwards propagation
of error

� � �

16. Neurons Eliasmith (2005) Vectors � � �
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The theory has three drawbacks. First, it describes what indi-
viduals are supposed to compute in the selection of potential
evidence, but provides no algorithm for how they do so. The
omission is exacerbated if brains do not calculate probabilities.
Second, it presupposes that the experimental instructions and par-
ticipants’ remarks about their selections are irrelevant. The instruc-
tions call for an evaluation of the hypothesis as true or false, or
variations thereof, and the participants’ remarks about the task are
likewise about truth and falsity, not probabilities (e.g., Evans,
1995; Goodwin & Wason, 1972; Lucas & Ball, 2005). The contrast
between conditionals of the sort used in the selection task and
those containing the word “probably”, as Goodwin (2014) has
shown in multiple experiments, is stark. And highly intelligent
individuals do assess the truth or falsity of hypotheses in the
selection of evidence: they select potential counterexamples
(Stanovich & West, 1998a). Oaksford and Chater (2007, p. 211)
counter that only a small percentage of individuals are competent
enough to make such selections, perhaps as little as 1% of the
population. They may use the meanings of hypotheses, but the rest
of us rely on optimal data selection. The mystery then is why
everyone converges on potential counterexamples to conditional
hypotheses in the “repeated” selection task. Third, the original
version of the theory fails to predict one of the canonical selec-
tions: pqq� . The more recent version fails to predict dependent
selections. Hence, it is not possible to fit either version to the
frequencies of canonical selections in our test bed of experiments.

The inference-guessing theory. Klauer et al. (2007) proposed
a set of related models, including one that postulates that individ-
uals make one or two inferences, or else use cues to guess or
match, in order to select evidence. This model is formulated, not as
an algorithm for mental processes, but as a multinomial
processing-tree (Riefer & Batchelder, 1988). Figure 1 presents the
tree for the inferential component of the model. For example,
given the card, p, and a hypothesis, if p then q, individuals who
infer that q should be on the other side of the card, should select
the p card. The inferences depend on the interpretations of the
if–then hypothesis, which depend on the parameters in Figure 1.
The guessing component, which is not shown in in the figure,
selects each of the four cards depending on the value of its own
parameter. Hence, one parameter governs whether individuals
make inferences or guesses, five parameters control the sort of
inference that they make, and four parameters control their
guesses. As Figure 1 shows, the inferential component yields 11
out of the 16 possible selections. The others can be made from the
guessing component of the model. Klauer et al. (2007) fitted the
model to their own results. It provided a better fit of selections of
single cards or pairs of cards than the stochastic model (see Theory
8 in Table 5), the heuristic-analytic model (see Theory 10 in Table
5), or the second version of optimal data selection (see Theory 14
in Table 5).

The chief problems with the theory are that it provides no
account of the mental processes of inference, which, its authors

Figure 1. The multinomial processing-tree for the inferential component of the inference-guessing model (from
Klauer et al., 2007).
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say, could depend on logical rules, mental models, or suppositions,
and that its inferential component cannot predict the canonical
selection, pqq� (see Figure 1 in which there is no path to this
selection). Yet, this component predicts five selections that occur
so rarely—below chance in the 228 experiments—that they should
be attributed to the theory’s guessing component, that is, the
selections: p� , q� , p�q� , pp� , and qq� (see Figure 1). The theory offers no
explanation for other phenomena, such as the dependence of
counterexample selections on their salience to the hypothesis. Each
of a theory’s free parameters is an abrogation of explanation in
favor of description. So, critics might argue that the theory’s goal
is to fit results rather than to explain them. Nonetheless, the model
is impressive, because it yields a better fit than both the heuristic-
analytic theory and the optimal data selection theory when it plays
the game by their rules.

An immediate snag in fitting the model to the results from the
228 experiments is that standard algorithms cannot fit models with
more parameters than categories of results: the inference-guessing
model has 10 parameters but the results have only four canonical
selections. We therefore had to cut the parameters down to four.
We describe the original theory and the function of the boxes in
Figure 1 in the Supplemental materials. We describe the simplified
theory in the next section.

The Goodness of Fit of the Two Theories

We fitted the model theory (based on Johnson-Laird & Wason,
1970b) and the simplified inference theory (based on Klauer et al.,
2007) to the frequencies of the canonical selections in the database
of 228 experiments. Figure 2 presents a multinomial processing-
tree for the model theory, which mimics the algorithm described
earlier.

To simplify the inference-guessing theory, we dropped the four
parameters for guessing. Such parameters provide little psycho-
logical understanding of how individuals test hypotheses, other
than to index the difficulty of the task. So, no profound loss occurs
in dropping them. But, it raises a problem: no way then exists for
the theory to make the canonical selection, pqq� , which it hitherto
could only guess. Because there is now no need for the parameter
to choose between inference and guessing, we assigned it instead
to the probability of guessing this canonical selection. As we
mentioned earlier, its inferential component predicts several selec-
tions that occur less often than chance, and so we made sure that
our simplification yields only canonical selections and depends
only on four parameters. We refer to it as the “simplified infer-
ence” model, and Figure 3 summarizes its multinomial processing-
tree. It is much simpler than the original theory. Its proponents
might well object that we have pruned it too much, but we had to
eliminate six of its parameters, because only the canonical selec-
tions are relevant.

Fitting the two theories to data. We optimized the values of
the two theories’ parameters so that they would predict the total
numbers of each the four canonical selections (1) for the abstract
hypotheses, (2) for the every day hypotheses, (3) for the deontic
principles, and (4) for all 228 experiments. The output was there-
fore a single set of three optimal values for the parameters of the
model theory, and a single set of four optimal values for the

parameters of the simplified inference theory. To find these opti-
mal values, we used the standard routine for minimization, the
L-BFGS-B1 algorithm from the Python SciPy package for scien-
tific computation. Our script can be downloaded from the online
supplemental materials.

To assess the goodness of these fits, we used the single set of
optimal values for a theory to calculate the root mean square errors
(RMSE) over all the experiments in a set. Table 6 presents these
RMSEs, and shows that models fit the overall data well and the
data for the abstract, everyday, and deontic sets of experiments.
But, the model theory yielded a more accurate fit than the simpli-
fied inference theory. To take into account the different complexity
of the trees for the two theories, we calculated the Bayesian
information criterion (BIC) and the Bayes factor, using the
maximum-likelihood method computed with the Python program
(and checked with the R-package for multinomial processing-trees,
MPTinR of Singmann & Kellen, 2013). The BIC indicates how
much information is lost when a tree represents the process that
generates the data, taking into account both its goodness of fit and
number of parameters. It penalizes theories with a greater number
of their parameters, and the smaller the BIC, the better the fit
between a theory’s tree and the results. The Bayes factor (Schwarz,
1978) also compares the different models. It approximates the
difference between the BIC values of the model theory and the
simplified inference theory (as computed in MPTinR). The higher
the Bayes factor the stronger it supports one theory over another,
and a value between 30 and 40 indicates strong evidence for the
tree with the better fit (Wagenmakers, Wetzels, Borsboom, & van
der Maas, 2011). Table 6 also reports these results. The BIC values
and the Bayesian information criteria enhanced the advantage of
the model theory, because it has one less parameter than the
simplified inference theory.

We searched the space of all possible multinomial processing-
tree models for up to three parameters and with no repeating
parameter in the search path, and there were 16 other possible trees
for optimal fits for the 228 experiments. The model theory was
closest to the best model, deviating from it only in one decimal
place. It therefore appears that no alternative theory could yield a
better fit for these experiments. Yet, as we argue in the final
section of the paper, a superior fit to performance in a particular
task does not guarantee a superior theory in general.

Doubtless, the 10 parameters of the original inference-guessing
model theory would provide a better fit than the model theory for
the results of the 99 experiments reporting the data for all 16
possible selections. But, apart from the canonical selections, those
that remain are the result of guesses, happenstance, and failures to
carry out the task, such as not selecting any evidence. The one
possible exception is the selection of all four items of evidence,
which could reflect a biconditional interpretation or a prudent
choice of all the items of evidence, perhaps to avoid having to
think. Hence, such an analysis would be to overfit the data—to fit
low frequency noise rather than real selections. As von Neumann

1 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize
.fmin_l_bfgs_b.html
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famously remarked, “With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk” (Dyson, 2004).

General Discussion

Do naive individuals grasp the role of falsification in testing hy-
potheses? What mental processes underlie their selections of evi-

dence? What factors lead them to select potential counterexamples?
We began with these questions, and now we can answer them.

Falsification is not intuitive for most individuals, and so they
overlook possibly falsifying evidence, as shown in their failure to
select the potential counterexample, q� , in testing a conditional hypoth-
esis, if p then q, that is, a case in which q does not hold. Yet, if q�

Figure 2. A multinomial process-tree for the model theory (based on Johnson-Laird & Wason’s, 1970b,
algorithm), which predicts selections of evidence to test conditional and biconditional hypotheses. Its parameters
govern the interpretation of hypotheses, and the shift from system 1 using mental models to system 2 using fully
explicit models (see the account in the text).

Figure 3. A multinomial process-tree summarizing the simplified inference theory’s predictions of evidence
selected to test a conditional hypothesis, if p then q.
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co-occurs with p, then the hypothesis is false. This egregious omission
in early studies of the selection task shocked philosophers and psy-
chologists, and led both to skepticism about the task and to the large
number of its replications. However, given feedback about the con-
sequences of their selections in the repeated selection task, almost
everyone realizes sooner or later the crucial need to select q� .

The mental processes underlying the selection of evidence to
test conditional hypotheses have provoked at least 16 different
theories (see Table 5). Some theories fail because they cannot
explain the dependence of selections. Some theories fail because
they cannot predict the four canonical selections: pq, p, pqq� , and
pq� . Some theories fail because they cannot answer the third ques-
tion above—the contents of hypotheses, instructions, and the fram-
ing of the task, which make counterexamples salient, can all lead
to falsifying selections. And some theories fail because they cannot
be fitted to experimental results.

Only Two Theories Are Viable

The model theory is based on replacing logic with models in an
algorithm due to Johnson-Laird and Wason (1970b). The theory
argues that the selection of evidence depends on intuitions based
on the meaning of the hypothesis, or, in part or whole, on delib-
erations using that meaning to yield a counterexample to the
hypothesis.

The inference-guessing theory (Klauer et al., 2007) argues that
selections depend either on inferring the consequences of the
hypothesis or on cues that trigger guessing or other noninferential
processes.

The model theory yields a better fit to the 228 experiments in
our meta-analysis, and one that is almost optimal. However, we
were forced to cut down the 10 parameters of the inference-
guessing model in order to fit it to results concerning the four
canonical selections. The model theory has three main advantages.

First, it presents an algorithmic account, implemented in a
computer program, of how individuals use the meanings of hy-
potheses to guide their tests of evidence, either intuitively or
deliberatively. People appear to rely on intuitions in selecting
potential instances of the hypothesis, because they tend not even to
look at potential counterexamples in the evidence. Likewise, they

normally take several trials in the repeated selection task before
they switch to selecting such items.

Second, its predictions are corroborated by the experiments in
the literature. They yield consistent results (see Table 1). They
bear out its prediction of canonical selections (see Table 2). They
yield dependent selections of evidence, for example, individuals
choose q only if they choose p, which is corroborated in the greater
redundancy of real experiments over that of 10,000 of simulations
of each experiment (see Table 3). They show that contents affect
the likelihood of counterexample selections, which are most likely
with deontic principles, less likely with everyday hypotheses, and
least likely with abstract hypotheses (see Table 4).

Third, the model theory avoids a puzzle and a paradox for
theories based on logic (e.g., see Theories 3 through 5 in Table 5).
Such theories postulate that individuals combine a hypothesis,
such as the following: “If there is an E on one side of a card, then
there is a 2 on the other side of the card” with an item of evidence,
such as the card, E, to infer that there is a 2 on its other side. They
therefore choose the card satisfying the clause in the hypothesis:
“There is an E on one side of a card.” How do they identify the
card that fits this description? Proponents of inferential theories,
we assume, envisage that they use the meaning of the clause to
identify the appropriate card. But, if they can do so, why cannot
they use the meaning of the conditional hypothesis itself to deter-
mine which cards to select? That is the puzzle. The meaning of
hypotheses, as the model theory shows, can be used to select
evidence to test their truth or falsity. No compelling reason exists
either for the need to use inferences in selecting evidence or
against the use of meaning to do so.

The paradox for theories based on logic, as we pointed out
earlier, is that a “unicorn” hypothesis, such as,

“All unicorns are invisible” (in logic: for any x, if x is a unicorn
then x is invisible) is equivalent in logic to

“No visible things are unicorns” (for any x, if x is visible then
x is not a unicorn). So, the observation of a grizzly bear corrob-
orates the unicorn hypothesis: it is visible and not a unicorn
(Hempel, 1945). In fact, the unicorn hypothesis is bound to be true
in logic. Unicorns do not exist, and so no counterexamples to the
hypothesis exist, either—there are no visible unicorns. But, in the
model theory, the truth of conditionals demands an additional

Table 6
The Model Theory’s and the Simplified Inference Theory’s Goodness of Fit With the Canonical
Selections of Evidence for Abstract Hypotheses, Everyday Hypotheses, and Deontic Principles,
and for the Overall Results of 228 Experiments: The Root Mean Square Errors (RMSE) for
Their Predictions Based on the L-BFGS-B Algorithm, the Bayesian Information Criterion (BIC),
and the Bayes Factor for the Better Fitting Model

The numbers of experiments
of the three sorts

The two models

Bayes factor of the model
theory vs. the simplified

inference theory

The model theory
(3 parameters)

The simplified
inference theory
(4 parameters)

RMSE (10�6) BIC RMSE (10�6) BIC

Abstract: 104 15.5 50.4 20.0 59.0 73.7
Everyday: 44 6.4 45.2 8.3 53.1 51.9
Deontic: 80 6.1 46.4 12.3 54.2 49.2
Overall: 228 19.2 54.7 32.6 63.9 99.4
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corroboration. It is necessary to establish the existence of at least
one instance of the hypothesis. The unicorn hypothesis awaits the
discovery of an invisible unicorn.

What our account has ruled out is more important than what
it has ruled in. Readers can be confident in the following
conclusions: (a) No need exists to defend impeccable rationality
in the testing of hypotheses. People err in making decisions
(see, e.g., Kahneman, 2011), they err in reasoning (see, e.g.,
Khemlani & Johnson-Laird, 2017), and they err in the selection
of evidence (see Table 4). Defenders of rationality have made
valiant efforts to explain away the errors. But, the errors are
robust, frequent, and predictable. (b) No need exists to invoke
probabilities in order to explain the selection of evidence to test
conditional hypotheses (pace Kirby, 1994; Oaksford & Chater,
1994). Individuals distinguish quite sharply between if p then q
and if p then probably q (Goodwin, 2014). Despite the ingenuity
of probabilistic theories, they have to posit that participants
ignore the instructions to the selection task. They call for the
selection of evidence to test whether the hypothesis holds for
four items (the four cards on the table). And the participants’
introspections about performance hardly ever refer to probabil-
ities, but they do refer to truth and falsity. If true means a
probability of 1 and false means a probability of 0, then prob-
ability becomes an idle wheel in the selection task; and if truth
allows a probability of less than 1 and falsity a probability of
more than 0, then the selection task, as Wason formulated it, is
untestable. No matter what items are on the other side of the
four cards, the hypothesis could be true. Very intelligent peo-
ple, as shown in their level of education or performance on the
SAT, tend to make counterexample selections (Hoch & Tsch-
irgi, 1985; Stanovich & West, 1998a, b; Newstead, Handley,
Harley, Wright, & Farrelly, 2004), and even probabilists allow
that these individuals carry out the task’s instructions correctly.
A plausible conjecture is that people think probabilistically
about the selection task—and indeed about any task— only if its
contents, instructions, or framing make at least an implicit
reference to probabilities. How they do so is rightly the target
of probabilistic theories.

After 50 years of research into the testing of hypotheses, we are
bound to ask whether it has paid off and what, if anything, might
be done to prevent the future breeding of multiplicities of theories
of the same cognitive paradigm. Skeptics might argue that multiple
theories are inevitable in studies of the mind. Because we have
winnowed away most of the present theories, we reject this view.
One antidote to overmultiplication is to require theories to have a
purview of more than a single experimental paradigm (Newell,
1973). Another antidote is to require them to describe mental
processes and to do so in the form of algorithms (Johnson-Laird,
1983, p. 6). Nearly all the theories in Table 5 fail to meet these two
criteria. Still another antidote is to carry out more stringent exper-
iments, but that in turn demands more precise and more sorts of
theoretical predictions.

How do individuals choose potential evidence to test a hypoth-
esis in daily life? The answer is perhaps simpler than the size of the
literature suggests. When people understand a general hypothesis,
such as “If a Brit admires Trump, then the Brit voted for Brexit,”
its mental models lead them to find out whether Brits who admire
Trump also voted for Brexit, and perhaps whether Brits who voted
for Brexit also admire Trump. So far, so good. But, they have

overlooked a potential counterexample to the hypothesis. To pre-
vent this oversight, they need to go beyond intuition, to deliberate,
and to flesh out a model of a counterexample—a Brit who admires
Trump but who did not vote for Brexit. This counterexample can
guide them to some potentially falsifying evidence. Our explora-
tion has indeed led us back to where we started (Johnson-Laird &
Wason, 1970b), and perhaps, as the epigraph to this paper sug-
gests, we now know it for the first time. We know its weaknesses.
It needs to use parameters to model insight into falsification. And
they are a substitute for our ignorance. The next step in the
exploration is to replace them with explanations.
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